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ABSTRACT

Despite the popularity of mobile applications, their performance
and energy bottlenecks remain hidden due to a lack of visibility into
the resource-constrained mobile execution environment with po-
tentially complex interaction with the application behavior. We de-
sign and implement ARO, the mobile Application Resource Optimizer,
the first tool that efficiently and accurately exposes the cross-layer
interaction among various layers including radio resource chan-
nel state, transport layer, application layer, and the user interac-
tion layer to enable the discovery of inefficient resource usage for
smartphone applications. To realize this, ARO provides three key
novel analyses: (i) accurate inference of lower-layer radio resource
control states, (ii) quantification of the resource impact of applica-
tion traffic patterns, and (iii) detection of energy and radio resource
bottlenecks by jointly analyzing cross-layer information. We have
implemented ARO and demonstrated its benefit on several essential
categories of popular Android applications to detect radio resource
and energy inefficiencies, such as unacceptably high (46%) energy
overhead of periodic audience measurements and inefficient con-
tent prefetching behavior.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design – Wireless Communication; C.4 [Performance

of Systems]: Measurement Techniques

General Terms

Algorithms, Design, Measurement, Performance

Keywords

Smartphone Applications, Radio Resource Optimization, Cross-
layer Analysis, RRC state machine, UMTS, 3G Networks

1. INTRODUCTION
Increasingly ubiquitous cellular data network coverage gives an

enormous impetus to the growth of diverse smartphone applica-
tions. Despite a plethora of such mobile applications developed
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by both the active user community and professional developers,
there remain far more challenges associated with mobile applica-
tions compared to their desktop counterparts. In particular, appli-
cation developers are usually unaware of cellular specific charac-
teristics that incur potentially complex interaction with the appli-
cation behavior. Even for professional developers, they often do
not have visibility into the resource-constrained mobile execution
environment. Such situations potentially result in smartphone ap-
plications that are not cellular-friendly, i.e., their radio channel uti-
lization or device energy consumption are inefficient because of a
lack of transparency in the lower-layer protocol behavior. For ex-
ample, we discovered that for Pandora, a popular music streaming
application on smartphones, due to the poor interaction between
the radio resource control policy and the application’s data transfer
scheduling mechanism, 46% of its radio energy is spent on periodic
audience measurements that account for only 0.2% of received user
data (§7.2.1).

In this work, we address the aforementioned challenge by devel-
oping a tool called ARO (mobile Application Resource Optimizer).
To the best of our knowledge, ARO is the first tool that exposes the
cross-layer interaction for layers ranging from higher layers such
as user input and application behavior down to the lower proto-
col layers such as HTTP, transport, and very importantly radio re-
sources. In particular, so far little focus has been placed on the in-
teraction between applications and the radio access network (RAN)
in the research community. Such cross-layer information encom-
passing device-specific and network-specific information helps cap-
ture the tradeoffs across important dimensions such as energy effi-
ciency, performance, and functionality, making such tradeoffs ex-
plicit rather than arbitrary as it is often the case today. It therefore
helps reveal inefficient resource usage (e.g., high resource overhead
of periodic audience measurements for Pandora) due to a lack of
transparency in the lower-layer protocol behavior, leading to sug-
gestions for improvement.

We choose UMTS (the Universal Mobile Telecommunications
System) network, one of the most popular 3G mobile communica-
tion technologies [1], as the target RAN for our ARO prototype. In
UMTS, the key factor affecting application performance and net-
work energy efficiency is the Radio Resource Control (RRC) state
machine [24] whose purpose is to efficiently utilize limited radio
resources and to improve handset battery life. A handset (i.e., the
mobile device) can be in one of three RRC states (Figures 1 and 2)
each with vastly different amount of allocated radio resources and
power. Application traffic patterns trigger RRC state transitions,
which in turn affect radio resource utilization, handset energy con-
sumption, and user experience. Awareness of the RRC states and
their transition behavior is essential to ensuring efficient network
energy usage [24, 25].
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ARO bridges the aforementioned gap, i.e., a lack of visibility
of cellular-specific characteristics hinders developers from building
cellular-friendly applications. In particular, ARO performs various
analyses for RRC layer, TCP layer, HTTP layer, user interactions,
followed by their cross-layer interactions, to reveal the impact of
smartphone applications on radio resources and battery life.

ARO consists of an online lightweight data collector and an of-
fline analysis module. To profile an application, an ARO user sim-
ply starts the data collector, which incurs less than 15% of runtime
overhead, and then runs the application for a desired duration as a
normal application user. The collector captures packet traces, sys-
tem and user input events, which are subsequently processed by the
analysis module on a commodity PC. The proposed ARO frame-
work (§3) also applies to other types of cellular networks such as
GPRS/EDGE, EvDO, and 4G LTE that involve similar tradeoffs to
those in UMTS (§2). We highlight our contributions as follows.

1. An accurate RRC state inference technique (§4). We present
a methodology that accurately infers RRC states from packet
traces collected on a handset. The inference technique is nec-
essary due to lacking of an interface for accessing RRC states
directly from the handset hardware. Using a simulation-based
approach to infer RRC states, the new inference algorithm
differs from previous work [24, 25] in two aspects. First,
the previous algorithm assumes traces are collected at the
cellular core network while our new approach targets at a
more common scenario where traces are captured directly on
a handset. Second, our algorithm significantly improves the
inference accuracy by performing more fine-grained simula-
tion of transmission queues to more precisely capture state
transitions. As shown in §4.3, considering such new factors
increases the accuracy of state transition identification from
85% to 98%. We devise a novel power-based inference algo-
rithm to validate our packet-based inference approach (§4.3).

2. Root cause analysis for short traffic bursts (§5.2). Low
efficiency of radio resource and energy usage are fundamen-
tally attributed to short traffic bursts carrying small amount
of user data while having long idle periods, during which a
device keeps the radio channel occupied, injected before and
after the bursts [10, 24]. We develop a novel algorithm to
identify them and to distinguish which factor triggers each
such burst, e.g., user input, TCP loss, or application delay,
by synthesizing analysis results of the TCP, HTTP, and user
input layer. ARO also employs a robust algorithm (§5.2.1)
to identify periodic data transfers that in many cases incur
high resource overhead. Discovering such triggering factors
is crucial for understanding the root cause of inefficient re-
source utilization. Previous work [13, 24] also investigate the
impact of traffic patterns on radio power management pol-
icy and propose suggestions. In contrast, ARO is essential
in providing more specific diagnosis by breaking down re-
source consumption into each burst with its triggering factor
accurately inferred. For example, for the Fox News applica-
tion (§7.2.2), by correlating application-layer behaviors (e.g.,

transferring image thumbnails), user input (e.g., scrolling the
screen), and RRC states, ARO reveals it is user’s scrolling
behavior that triggers scattered traffic (i.e., short bursts) for
downloading image thumbnails in news headlines (i.e., im-
ages are transferred only when they are displayed as a user
scrolls down the screen), and quantifies its resource impact.
Analyzing data collected at one single layer does not provide
such insight due to incomplete information (Table 6).

3. Quantifying resource impact of traffic bursts (§5.3). In
order to quantitatively analyze resource bottlenecks, ARO
addresses a new problem of quantifying resource consump-
tion of traffic bursts due to a certain triggering factor. It is
achieved by computing the difference between the resource
consumption in two scenarios where bursts of interest are
kept and removed, respectively. The latter scenario requires
changing the traffic pattern. To address such a challenge of
modifying a cellular packet trace while having its RRC states
updated accordingly, ARO strategically decouples the RRC
state machine impact from application traffic patterns, modi-
fies the trace, and then faithfully reconstructs the RRC states.

4. Identification of resource inefficiencies of real Android

applications (§7). We apply ARO to six real Android ap-
plications each with at least 250,000 downloads from the
Android market as of Dec 2010. ARO reveals that many of
these very popular applications (Fox News, Pandora, Mob-
clix ad platform, BBC News etc.) have significant resource
utilization inefficiencies that are previously unknown. We
provide suggestions on improving them. In particular, we are
starting to contact developers of popular applications such as
Pandora. The feedback has been encouragingly positive as
the provided technique greatly helps developers identify re-
source usage inefficiencies and improve their applications [2].

The rest of the paper is organized as follows. After providing
sufficient technical background in §2, we outline the ARO system
in §3. In §4, we detail the RRC state inference technique with its
evaluation, followed by analyses at higher layers (TCP, HTTP, burst
analysis) as well as the cross-layer synthesis in §5. We briefly de-
scribe how we implement the ARO prototype in §6, then present
case studies of six Android applications in §7 to demonstrate typ-
ical usage of ARO. We summarize related work in §8 before con-
cluding the paper in §9.

2. BACKGROUND
This section provides background for further discussion.
The UMTS Architecture. The UMTS network consists of three

subsystems: handsets (mobile devices), UMTS Terrestrial Radio
Access Network (UTRAN), and the Core Network (CN) [17].
UTRAN, the radio access network connecting handsets and CN,
consists of two components: Node-B (i.e., base stations), and Ra-
dio Network Controllers (RNC). RNC is a governing element in
UTRAN and is responsible for controlling multiple Node-Bs. The
centralized CN is the backbone of the cellular network.

The RRC States. In UMTS networks, the Radio Resource Con-
trol (RRC) protocol introduces for each handset a state machine to
efficiently utilize the limited radio resources (i.e., WCDMA codes).
A single RRC state machine is maintained at both a handset and
the RNC. The two peer entities are always synchronized via control
channels except during transient and error situations [17]. Typically
there are three RRC states: IDLE, CELL_DCH, and CELL_FACH.
We refer to them as IDLE, DCH, and FACH thereafter, respectively.

When a handset is turned on, it is at the IDLE state by default.
The handset has not established an RRC connection with the RNC,
thus no radio resource is allocated and the handset cannot trans-
fer any user data. The power consumption of its radio interface
is almost zero at IDLE1. At the DCH state, the RRC connection

1Some UMTS networks support a hibernating state called
CELL_PCH. It is similar to IDLE but the state promotion delay
from CELL_PCH is shorter.
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Figure 2: RRC State Ma-

chine (Carrier 2)

is established and a handset is usually allocated dedicated trans-
port channels2 for both downlink (DL, RNC→handset), and uplink
(UL, handset→RNC), allowing the handset to fully utilize radio
resources for high-speed user data transmission. The radio power
consumption at DCH is the highest (600 to 800 mW). The FACH

state is an intermediate state between IDLE and DCH. At FACH,
the RRC connection is established but there are only low-speed
shared channels (for both downlink and uplink) allocated to a hand-
set. FACH is designed for applications with low data throughput
rate. Radio power at FACH is 55% to 75% of that at DCH (§4.4).

State Transitions. There are two types of RRC state transitions:
promotions (IDLE→DCH, FACH→DCH, and IDLE→FACH), and
demotions (going in reverse directions). Promotions (demotions)
switch from a state with lower (higher) radio resource and radio
power consumption to another state requiring more (less) radio re-
sources and power. Figure 1 and Figure 2 show the RRC state
machines of two large U.S. commercial UMTS carriers (denoted
as Carrier 1 and 2, respectively) whose state transition models are
inferred by our previous work [24]. As illustrated, promotions
are triggered by user data transmission. A promotion from IDLE

begins when any user data transmission activity happens, while a
FACH→DCH promotion takes place when a handset sends or re-
ceives data at a higher speed, i.e., the per-device queue size, called
Radio Link Controller (RLC) buffer size, exceeds a threshold in
either direction (uplink and downlink use separate RLC buffers).
On the other hand, state demotions are triggered by two inactivity
timers configured by the RNC. We denote the DCH→FACH timer
as α, and the FACH→IDLE timers as β. At DCH state, the RNC
resets the α timer to a constant threshold T whenever it observes
any data frame. If there is no user data transmission for T seconds,
the α timer expires and the state is demoted to FACH. The β timer
uses a similar scheme.

Promotion Delays and Tail Times distinguish cellular networks
from other types of access networks. An RRC state promotion in-
curs a long latency (up to 3 seconds) during which tens of control
messages are exchanged between a handset and the RNC for re-
source allocation. A large number of state promotions incur high
signaling overhead as they increase processing load at the RNC
and worsen user experience [8]. In contrast, state demotions finish
much faster, but they incur tail times that cause significant waste of
resources [10, 24, 25]. A tail is the idle time period matching the
inactivity timer value before a state demotion. During a tail time,

2A UE can access HSDPA/HSUPA (High Speed Downlink/Uplink
Packet Access) mode, if supported by the infrastructure, at DCH
state. For HSDPA, the high speed transport channel is not dedi-
cated, but shared by a limited number (e.g., 32) of users [17].

Data Collector

RRC Analyzer (§4)

Hanset & Carrier Type

TCP Analyzer (§5.1)

HTTP Analyzer (§5.1)

Burst Analyzer (§5.2)

Profiling the App (§5.3)

Results Visualization (§7)

Online Data Collection

O
fflin

e
 A

n
a

ly
sis

Infer RRC states from packet traces

Associate each packet with its

transport-layer functionality

Associate packets with their 

application-layer semantics

Analyze triggering factors of traffic 

bursts with high resource overhead

Quantify resource impact of traffic 

bursts to reveal resource bottleneck

Visualize cross-layer analysis results

Figure 3: The ARO System

a handset simply waits for the inactivity timer to expire, but it still
occupies transmission channels and WCDMA codes, and its radio
power consumption is kept at the corresponding level of the state.
Due to the tail time, transmitting even small amount of data can
cause significant radio energy and radio resource consumption.

Other Types of Radio Access Networks. Promotion delays, tail
times, and their associated tradeoffs [24], also exist in other types of
radio access networks (e.g., GPRS/EDGE [6] and EvDO [12]). A
similar battery life versus latency tradeoff exists in 4G LTE network
due to its DRX (Discontinuous Reception) mechanism, which in-
volves a state machine similar to the one used by UMTS [27]. The
ARO framework (§3) applies to all the above types of networks.

3. ARO OVERVIEW
This section outlines the ARO system, which consists of two

main components: the data collector and the analyzers. The data
collector runs efficiently on a handset to capture information essen-
tial for understanding resource usage, user activity, and application
performance. Our current implementation collects network packet
traces and user input events. But other information such as applica-
tion activities (e.g., API calls) and system information (e.g., CPU
usage) can also be collected for more fine-grained analysis. The
collected traces are subsequently fed into the analyzers, which run
on a PC, for offline analysis. Our design focuses on modularity
to enable independent analysis of individual layers whose results
can be subsequently correlated for joint cross-layer analysis. The
proposed framework is easily extensible to other analyzers of new
application protocols. We describe the workflow of ARO as out-
lined in Figure 3.

1. The ARO user invokes on her handset the data collector,
which subsequently collects relevant data, i.e., all packets in
both directions and user input (e.g., tapping or scrolling the
screen). Unlike other smartphone data collection efforts [28,
14], our ability to collect user interaction events and packet-
level traces enables us to perform fine-grained correlation
across layers. ARO also identifies the packet-to-application
correspondence. This information is used to distinguish the
target application, i.e., the application to be profiled, from
other applications simultaneously accessing the network. Note
that ARO collects all packets since RRC state transitions are
determined by the aggregated traffic of all applications run-
ning on a handset.
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2. The ARO user launches the target application and uses the
application as an end user. Factors such as user behavior ran-
domness and radio link quality influence the collected data
and thus the analysis results. Therefore, to obtain a rep-
resentative understanding of the application studied, ARO
can be used across multiple runs or by multiple users to ob-
tain a comprehensive exploration of different usage scenarios
of the target application, as exemplified in our case studies
(§7.1). The target application might also be explored in sev-
eral usage scenarios, covering diverse functionalities, as well
as execution modes (e.g., foreground and background).

3. The ARO user loads the ARO analysis component with the
collected traces. ARO then configures the RRC analyzer with
handset and carrier specific parameters, which influence the
model used for RRC analysis (§4). The TCP, HTTP, and
burst analyzers are generally applicable.

4. ARO then performs a series of analyses across several lay-
ers. In particular, the RRC state machine analysis (§4) accu-
rately infers the RRC states from packet traces so that ARO
has a complete view of radio resource and radio energy uti-
lization during the entire data collection period. ARO also
performs transport protocol and application protocol analysis
(§5.1) to associate each packet with its transport-layer func-
tionality (e.g., TCP retransmission) and its application-layer
semantics (e.g., an HTTP request). Our main focus is on TCP
and HTTP, as the vast majority of smartphone applications
use HTTP over TCP to transfer application-layer data [21,
16]. ARO next performs burst analysis (§5.2), which uti-
lizes aforementioned cross-layer analysis results, to under-
stand the triggering factor of each short traffic burst, which is
the key reason of low efficiency of resource utilization [24].

5. ARO profiles the application by computing for each burst
(with its inferred triggering factor) its radio resource and ra-
dio energy consumption (§5.3) in order to identify and quan-
tify the resource bottleneck for the application of interest.
Finally, ARO summarizes and visualizes the results. Visual-
izing cross-layer correlation results helps understand the time
series of bursts that are triggered due to different reasons, as
later demonstrated in our case studies (§7).

4. INFERRING RRC STATES
We present our algorithm to accurately infer RRC states and state

transitions from packet traces collected on handsets. We focus on
describing the inference algorithm for Carrier 1 (Figure 1) while
the technique is also applicable to other carriers using a different
state machine through minor modification.

Clearly, this problem can be cleanly solved if the online data
collector is able to read the RRC state from the handset hardware.
However, we are not aware of any API or known workaround for
directly accessing the RRC state information on any smartphone
system. In other words, it is difficult to directly observe the low-
level communication between a handset and the RNC.

Previous effort [24, 25] also applies a simulation-based approach
to estimate RRC state machine statistics. Our approach differs from
previous work in two aspects. First, the previous algorithm assumes
traces are collected at the cellular core network while our approach
targets at a more common scenario where traces are captured di-
rectly on a handset. Second, our algorithm significantly improves
the inference accuracy by performing more fine-grained simulation
of uplink and downlink RLC buffers to more precisely capture state
promotions.

4.1 Measuring State Machine Parameters
We first conduct controlled experiments to measure Carrier 1’s

state machine parameters. To our knowledge, this is to date the
most comprehensive characterization of the RRC state machine be-
havior for a commercial cellular carrier in terms of measured pa-
rameters. These parameters shown in Table 1 are statically con-
figured by the RNC while different RNCs may adopt different val-
ues3. Therefore prior to use, the ARO analyzer needs to be con-
figured with (automatically inferred) local RRC parameters, which
are used by the state inference algorithm in §4.2.

4.1.1 Basic State Machine Parameters

We first describe three basic state machine parameters.
Inactivity timers control the release of radio resources. Using

our previously proposed methodology [24], we infer the DCH→FACH

and the FACH→IDLE timers to be 5 sec and 12 sec, respectively,
for both an HTC TyTN II phone and a Sierra 3G Air card. The
timer values are validated by measuring the real-time power of an
HTC TyTN II phone (similar to Figure 7).

State Promotion Delay refers to the latency caused by a state
promotion. Using the methodology described in previous work [24],
we derive the IDLE→DCH promotion delay and the FACH→DCH

delay to be 2.0±1.0 sec and 1.5±0.5 sec, respectively. The delays
are not constant because the control channel rate, and the workload
of the RNC, which processes state promotions, may vary4.

RLC Buffer Thresholds are essential in determining the pro-
motions from FACH to DCH, as described in §2. We measure the
RLC buffer thresholds for uplink (UL) and downlink (DL) sepa-
rately using the method described in [24]. The measurement results
are summarized in Figure 4 where the Y axis corresponds to the
probability of observing a FACH→DCH promotion when a packet
of x bytes is sent. We observe that for DL, the threshold is fixed to
475 bytes while the RLC buffer threshold for UL varies from 500 to
560 bytes. Such a difference is likely due to the disparity between
the UL and DL transport channels used by the FACH state [22].

4.1.2 New State Machine Parameters

We next discuss new state machine parameters that have not
been explored by previous work. Considering these new factors in
the simulation algorithm increases the accuracy of state promotion
identification from 85% to 98% (§4.3).

RLC Buffer Consumption Time quantifies how fast the RLC
buffer is cleared after it is filled with data at FACH state. It de-
pends on channel throughput at FACH since the RLC buffer is not
emptied until all data in the buffer are transmitted [17]. Considering
RLC buffer consumption time enables the state inference algorithm
(§4.2) to perform more fine-grained simulation of RLC buffer dy-
namics to more precisely capture state promotions, thus improving
the inference accuracy.

We infer the RLC buffer consumption time by sending two pack-
ets separated by some delay. First, we send a packet of x bytes at
FACH with x smaller than the RLC buffer threshold so it never

3For example, for Carrier 1, RNCs in some big cities employ a
DCH→FACH timer of 3 sec instead of the common value of 5 sec.
4An IDLE→DCH/FACH promotion triggered by a downlink
packet is usually longer than that triggered by an uplink packet.
This is because when a downlink packet is to be received, it may
get delayed due to paging. In fact, even at IDLE, a handset pe-
riodically wakes up to listen for incoming packets on the paging
channel. If a downlink packet happens to arrive between two pag-
ing occasions, it will be delayed until the next paging occasion. In
practice, we observe via power monitor that the paging cycle length
is 2.56 sec for Carrier 1 and 1.28 sec for Carrier 2.
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triggers a FACH→DCH promotion. After a delay for y millisec-
onds, another packet of z bytes is sent in the same direction. We
fix z at 500 bytes and 475 bytes for uplink and downlink, respec-
tively, according to Figure 4 (the exact value of z does not matter
as long as z < the RLC buffer threshold < x+ z). Then observing
a FACH→DCH promotion suggests that the RLC buffer is not yet
emptied when the second packet arrives at the buffer, causing the
RLC buffer size to exceed the threshold.

Figure 5 shows the RLC buffer consumption time for uplink. For
each packet size x (X axis), we vary the delay y (Y axis) at a gran-
ularity of 25 ms, and perform aforementioned test for each pair of
(x, y) for 20 times. The error bars in Figure 5 cover a range of de-
lays (y values) for which we probabilistically observe a promotion.
The results for downlink are shown in Figure 6. Our results confirm
previous measurements that at FACH, the uplink transport channel
is much slower than the downlink channel [22].

Low traffic volume not triggering timers to reset. We found
that for Carrier 1, the DCH→FACH timer is not reset when a hand-
set has very little data to transfer for both directions. Specifically, at
DCH, a packet P does not reset the timer if both uplink and down-
link have transferred no more than 320 bytes (including P ) within
the past 300 ms. We believe the intent of such a design, which is
specific to Carrier 1 and is not documented by literature [17, 18,
22], is to save radio resources in DCH when there is small traffic
demand by a handset. Not considering this factor leads to overesti-
mation of DCH occupation time.

Fast Dormancy is a recently proposed feature in 3GPP speci-
fications [7]. Instead of waiting for inactivity timers to expire, a
handset can actively request for a state demotion to IDLE (or to
the hibernating CELL_PCH state with a lower promotion delay)
by sending a special RRC control message to the RNC. We investi-
gated four handsets using Carrier 1’s UMTS network: HTC TyTN
II, Sierra 3G Air card, and two Google Nexus One phones (A and
B). For TyTn II, the air card, and Nexus One A, their state demo-
tions are solely controlled by inactivity timers. For Nexus One B,
the measured α and β timers are 5 sec and only 3 sec (shorter than

Table 1: Carrier 1’s parameters used for RRC state inference

TyTn Sierra NexusOne

FACH→IDLE Timer (α) 12 seconds 12 sec / 3 sec+

DCH→FACH Timer (β) 5 seconds
RLC Buffer Thresholds UL:540 Bytes DL:475 Bytes

RLC Consumption Time (UL)∗ 0.0014x2 + 1.6x+ 20 msec
RLC Consumption Time (DL)∗ 0.1x+ 10 msec

IDLE→DCH Delay△ 2.0± 1.0 sec
FACH→DCH Delay 1.5± 0.5 sec

+ Depending on the fast dormancy behavior.
∗ Quadratic curve fitting based on Figure 5 and Figure 6.
△ An IDLE→DCH promotion triggered by a downlink packet can take
up to 5 seconds due to paging (see the footnote in §4.1.1). But usually
promotions from IDLE are triggered by uplink packets.

the default 12-sec β timer), respectively. Such an observation is
further validated by measuring the power of Nexus One B (Fig-
ure 7). It is highly likely that it employs fast dormancy to release
radio resources earlier to improve its battery life. Also we believe
that fast dormancy is controlled by the upgradable radio image that
distinguishes the two Nexus One phones. The incurred drawbacks
of fast dormancy are extra state promotions causing additional sig-
naling overhead and potentially worsening user experience [8, 24].

4.2 RRC State Inference Algorithm
We now describe our state inference algorithm, which takes a

packet trace P1, ..., Pn as input where Pi is the i-th packet in a
trace collected on a handset. The output is S(t) denoting the RRC
state or state transition at any given time t. S(t) corresponds to
one of the following: IDLE, FACH, DCH, IDLE→FACH, and
FACH→DCH. We assume the RRC state machine, which can be
inferred by other work [24], and its parameters (measured in §4.1)
are known.

Our state inference algorithm follows a high-level idea similar
to that in [24] by replaying the packet trace against an RRC state
machine simulator. The major differences are the following. First,
as mentioned before, our algorithm targets at a more common sce-
nario where traces are captured directly on a handset. Second, by
considering RLC buffer consumption time (§4.1.2), our algorithm
performs more fine-grained simulation of RLC buffer dynamics
(both uplink and downlink) to more precisely capture state pro-
motions. Sometimes a FACH→DCH promotion is triggered by
multiple small packets that incrementally fill up the RLC buffer,
instead of a single large packet with its size exceeding the RLC
buffer threshold. Previous approach [24] may miss such promo-
tions. Third, the improved algorithm considers cases where DCH

timers are not reset and the handset fast dormancy behaviors. We
show the accuracy improvement of our new technique in §4.3.

The algorithm performs iterative packet-driven simulation. Let
Pi and Pi+1 be two consecutive packets whose arrival time are ti
and ti+1, respectively. Intuitively, if S(ti) is known, then ∀ti <
t ≤ ti+1, S(t) can be inferred in O(1) based on three factors,
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Figure 8: Histogram of measured handset power values for the News1

trace collected on an HTC TyTn II phone

by following the RRC state transition rules. (i) The inter-arrival
time between Pi and Pi+1, depending on which a handset may ex-
perience tail times causing a state demotion then a possible state
promotion when Pi+1 arrives. (ii) The packet size of Pi+1, which
may trigger a FACH→DCH promotion if it fills up the RLC buffer.
(iii) The direction of Pi+1. Assuming that Pi+1 triggers a promo-
tion. If Pi+1 is downlink, the promotion already finishes when the
handset receives it. Therefore Pi+1 triggers a promotion before its
arrival. On the other hand, if Pi+1 is uplink i.e., the application just
puts the packet into the uplink RLC buffer, then the state promotion
has just begun. Therefore the promotion will happen after Pi+1 is
captured. When S(ti+1) is determined, S(ti+2) can be iteratively
computed based on S(ti+1) and Pi+2, and so on.

4.3 Validation of State Inference
We evaluate our simulation-based state inference technique by

comparing it with handset-power-based inference approach. We
simultaneously collect both power traces (using a hardware power
monitor [5]) and packet traces for popular web sites from an HTC
TyTn II smartphone using Carrier 1’s UMTS network. We infer the
RRC states independently from each trace, and then compare their
results. Note that ARO itself does not require any special moni-
toring equipment since it employs simulation-based state inference
technique.

4.3.1 Power-based State Inference

Inferring RRC states from power traces requires special moni-
toring equipment and is non-trivial due to noise. We next describe
a novel algorithm that infers RRC states from a handset’s overall

power consumption, since it is difficult to measure the radio inter-
face power separately. Our basic assumptions are (i) a handset’s 3G
radio interface consumes a considerable fraction of the total hand-
set power [31], and (ii) the power consumed at the three RRC states
differs significantly (§4.4). Both assumptions are confirmed by our
experiments (described later in Figure 8).

The input generated by the power meter is P (t) describing the
overall handset power at a granularity of 0.2 msec. Our power-
based state inference algorithm distinguishes RRC states using fixed
power thresholds and identifies state transitions by observing power
changes. It consists of three steps. (i) Downsample P (t) from
5kHz to 10Hz by averaging power values of every 500 power sam-
ples to reduce noise. (ii) Use two power thresholds µ and ν to dis-
tinguish the three RRC states: P (t) < µ for IDLE, µ ≤ P (t) < ν
for FACH, and ν ≤ P (t) for DCH. (iii) Identify state transitions
by examining power changes crossing the thresholds.

The values of µ and ν are determined from histograms of mea-
sured power values of each trace. A representative example for
an HTC TyTn II phone is shown in Figure 8, from which we ob-
serve that the measured overall handset power values form three
clusters corresponding to IDLE, FACH, and DCH. The variation

Table 2: Packet-based vs. power-based inference results

Trace name % Time State Promotions
(Trace Length) Overlap Agree Pkt Err Pwr Err

News1 (180s) 93.4% 7 1 (1) 0
News2 (180s) 96.5% 9 0 (2) 0
News3 (190s) 96.3% 9 0 (1) 0
News4 (250s) 95.5% 12 0 (2) 1
Social1(250s) 95.7% 13 0 (2) 0
Social2(180s) 91.3% 10 0 (2) 0
Social3(275s) 94.5% 18 1 (3) 0
Email1 (250s) 94.4% 16 0 (2) 1
Email2 (275s) 94.4% 17 0 (3) 0
Stream1(180s) 98.7% 3 0 (0) 0
Stream2(180s) 99.1% 2 0 (0) 0

Total (2390s) 95.3% 116 2 (18) 2

within each cluster is mostly due to power change of other system
components (e.g., CPU). Figure 8 indicates that the 3G radio in-
terface plays a vital role in determining the overall handset power
consumption, as at DCH, the radio power (800 mW) contributes
1/3 to 1/2 of the total device power (1600 mW to 2400 mW5). All
histograms for traces shown in Table 2 suggest that we set µ and ν
to 1000 mW and 1600 mW, respectively, for TyTn II.

4.3.2 Validation Results

We obtained 11 traces listed in Table 2 by simultaneously col-
lecting both packet traces and power traces. Then we employ both
algorithms (packet-based and power-based) to infer the RRC states.
Table 2 shows the comparison results. The “% Time Overlap” col-
umn computes the percentage of time periods during which both
algorithms produce exactly the same RRC state or the same state
promotion.

The right three columns of Table 2 compares inferred state pro-
motions. “Agree” counts the number of pairs (X,Y ), where pro-
motion X and Y are inferred by the two methods respectively, such
that X and Y have the same promotion type and their time periods
overlap (it does not require that they match exactly). For a pro-
motion inferred by either algorithm not belonging to such a pair, it
is either an error of packet-based inference methodology (counted
by the first number of “Pkt Err”) or an error of the power-based
approach (counted by “Pwr Err”) due to noise, judged by our man-
ual inspection. Table 2 indicates that both inference methods have
comparably high accuracy. We observe that inaccuracies are mostly
caused by noises for power-based approach, and variations of up-
link RLC buffer thresholds and consumption time, for packet-based
inference method.

Comparing with a previous inference algorithm. The “Pkt
Err” column compares our algorithm (the first number) with a pre-
vious simulation approach [24, 25] where RLC buffer consumption
rate and cases where the α timer is not reset (§4.1) were not consid-
ered (the second number in parenthesis). The results clearly show
that performing more fine-grained simulation improves the infer-
ence accuracy of state promotion identification from 85% to 98%
(i.e., reducing the total errors from 17 to 2).

Figure 9 visualizes inference results for the Social1 trace. The
figure consists of six bands (from up to down): measured power
curve, uplink packets (each vertical line corresponds to one packet),
downlink packets, bursts (§5.2), RRC states inferred by packets
(with tails inferred too), and states inferred by power. Different
RRC states are visualized by blocks with different shapes, shades,
and colors. Each arrow on the timeline indicates a state transition

5As shown in Figure 8, the base power of TyTn II is 800 mW as
long as the handset is on.
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Figure 9: Comparing power-based and packet-based state inference results (the Social1 trace). Each arrow on the timeline indicates a state

transition that is misidentified by previous approach but is correctly identified by our inference algorithm.

Table 3: Measured average radio power consumption

TyTn NexusOne ADP1 ∗

Carrier 1 Carrier 1 T-Mobile
P (IDLE) 0 0 10mW
P (FACH) 460mW 450mW 401mW
P (DCH) 800mW 600mW 570mW

P (FACH→DCH) 700mW 550mW N/A
P (IDLE→DCH) 550mW 530mW N/A

* Reported by [31] on an Android HTC Dream phone

Table 4: TCP analysis: transport-layer properties of packets

Category Label Description

TCP ESTABLISH A packet containing the SYN flag
connection CLOSE A packet containing the FIN flag

management RESET A packet containing the RST flag

Normal data DATA A normal data packet with payload
transfer ACK A normal ACK packet without payload

TCP DATA_DUP A duplicate data packet
congestion, DATA_RECOVER A data pkt echoing a duplicate ACK

loss, and ACK_DUP A duplicate ACK packet
recovery ACK_RECOVER An ACK echoing a duplicate data pkt

Others TCP_OTHER Other special TCP packets

that is misidentified by the previous approach [24] but is correctly
identified by our inference algorithm.

4.4 Applying the Radio Power Model
One important feature of ARO is the accurate estimation of ra-

dio energy consumption by using the inferred RRC states. Table 3
reports measured average radio power for an HTC TyTn II and a
Google Nexus One for each RRC state and during each state pro-
motion. Assuming these average values are representative [31, 24]
despite other factors such as signal strength that also directly impact
power consumption [26], the state inference results enable ARO to
accurately profile radio energy consumption. Given the state infer-
ence results S(t) and the measured radio power values P (·) shown
in Table 3, the radio energy consumed between t1 and t2 is com-
puted as

∫ t2

t1
P (S(t))dt.

5. PROFILING MOBILE APPLICATIONS
This section details analyses at higher layers, in particular the

transport layer and the application layer, using TCP and HTTP as
examples due to their popularity. We further describe how ARO
uses cross-layer analysis results to profile resource efficiency of
smartphone applications.

5.1 TCP and HTTP Analysis
TCP and HTTP analysis serve as prerequisites for understand-

ing traffic patterns created by the transport layer and the appli-

cation layer. Our main focus is on TCP and HTTP, as the vast
majority of smartphone applications use HTTP over TCP to trans-
fer application-layer data [21]. A recent large-scale measurement
study [16] using datasets from two separate campus wireless net-
works (3 days of traffic for 32,278 unique devices) indicates that
97% of handheld traffic is HTTP.

We first describe the TCP analysis. ARO extracts TCP flows,
defined by tuples of {srcIP, srcPort, dstIP, dstPort} from the raw
packet trace, and then infers the transport-layer property for each
packet in each TCP flow. In particular, each TCP packet is assigned
to one of the labels listed in Table 4. The labels can be classified
into four categories covering the TCP protocol behavior: (i) con-
nection management, (ii) normal data transfer, (iii) TCP conges-
tion, loss, and recovery, and (iv) other special packets (e.g., TCP
keep alive and zero-window notification).

In the third category, DATA_DUP is usually caused by a retrans-
mission timeout or fast retransmission, and ACK_DUP is triggered
by an out-of-order or duplicate data packet. Duplicate packets indi-
cate packet loss, congestion, or packet reordering that may degrade
TCP performance. A DATA_RECOVER packet has its sequence
number matching the ack number of previous duplicate ACK pack-
ets in the reverse direction, indicating the attempt of a handset to
transmit a possibly lost uplink packet or a downlink lost packet
finally arriving from the server. Similarly, the ack number of an
ACK_RECOVER packet equals to the sequence number of some du-
plicate data packets plus one, indicating the recipient of a possibly
lost data packet.

ARO subsequently performs HTTP analysis by reassembling TCP
flows then following the HTTP protocol to parse the TCP flow data.
HTTP analysis provides ARO with the precise knowledge of map-
pings between packets and HTTP requests or responses.

5.2 Burst Analysis
As described earlier, low efficiencies of radio resource and en-

ergy utilization are attributed to short traffic bursts carrying small
amount of data. ARO employs novel algorithms to identify them
and to infer which factor triggers each such burst by synthesizing
analysis results of the RRC, TCP, HTTP, and user input layer. Such
triggering factors, which to our knowledge are not explored by pre-
vious effort, are crucial for understanding the root cause of ineffi-
cient resource utilization.

ARO defines a burst as consecutive packets whose inter-arrival
time is less than a threshold δ. We set δ to 1.5 seconds since it
is longer than commonly observed cellular round trip times [19].
Since state promotion delays are usually greater than δ, all state
promotions detected in §4.2 are removed before bursts are identi-
fied. Each bar in the “Bursts” band in Figure 9 is a burst.

A burst can be triggered by various factors. Understanding them

327



Table 5: Burst Analysis: triggering factors of bursts

Label The burst is triggered by ...

USER_INPUT User interaction
LARGE_BURST (The large burst is resource efficient)
TCP_CONTROL TCP control packets (e.g., FIN and RST)
SVR_NET_DELAY Server or network delay
TCP_LOSS_RECOVER TCP congestion / loss control
NON_TARGET Other applications not to be profiled
APP The application itself

APP_PERIOD Periodic data transfers (One special type of APP)

benefits application developers who can then customize optimiza-
tion strategies for each factor, e.g., to eliminate a burst, to batch
multiple bursts, or to make certain bursts appear less frequently.
Some bursts are found to be inherent to the application behavior.
We next describe ARO’s burst analysis algorithm that assigns to
each burst a triggering factor shown in Table 5 by correlating TCP
analysis results and user input events.

The algorithm listed in Figure 10 consists of seven tests each
identifying a triggering factor by examining burst size (duration),
user input events, payload size, packet direction, and TCP proper-
ties (§5.1) associated with a burst. We explain each test as fol-
lows. A burst can be generated by a non-target application not
profiled by ARO (Test 1). For Test 2, if a burst is large and long
enough (determined by two thresholds ths and thd), it is assigned
a LARGE_BURST label so ARO considers it as a resource-efficient
burst. If a burst only contains TCP control packets without user
payload (Lines 06 to 08), then it is a TCP_CONTROL burst as de-
termined by Test 3. To reveal delays caused by server, network,
congestion or loss, the algorithm then considers properties of the
first packet in the burst in Test 4 and 5. For Test 6, if any user input
activity is captured within a time window of ω seconds before a
burst starts, then the burst is assigned a USER_INPUT label, if it
contains user payload. For bursts whose triggering factors are not
identified by the above tests, they are considered to be issued by the
application itself (APP in Test 7). Most such bursts turn out (and
are validated) to be periodic transfers (APP_PERIOD) triggered by
an application using a software timer. We devise a separate algo-
rithm to detect them (§5.2.1). In practice it is rare that a short burst
satisfies multiple tests.

The burst analysis algorithm involves three parameters: ths and
thd that quantitatively determine a large burst (Test 2), and the time
window ω (Test 6). We set ths = 100 KB, thd = 5 sec, and ω =
1 sec. We empirically found that varying their values by ±25%
(and ±50% for ω) does not qualitatively affect the analysis results
presented in §7.

Within aforementioned seven tests, Test 1 to 3 are trivial. We
validate Test 4 and 5 by setting up a web server and intentionally
injecting server delay and packet losses. Evaluation for Test 6 and
Test 7, which is more challenging due to a lack of ground truth,
is done by manually inspecting our collected traces used for case
studies (§7).

5.2.1 Identifying Periodic Transfers

We design a separate algorithm to spot APP_PERIOD bursts
(Table 5), which are data transfers periodically issued by a hand-
set application using a software timer. Such transfers are important
because their impact on resource utilization can be significant al-
though they may carry very little actual user data (e.g., the Pandora
application described in §7.2.1).

ARO focuses on detecting three types of commonly observed pe-
riodic transfers, though not mutually exclusive. They constitute the
most simple forms of periodic transfers a mobile application can

01 Burst_Analysis (Burst b) {
02 Remove packets of non-target apps;

03 if (no packet left) {return NON_TARGET;} Test 1

04 if (b.payload > ths && b.duration > thd) Test 2

05 {return LARGE_BURST;}

06 if (b.payload == 0) { Test 3

07 if (b contains any of ESTABLISH, CLOSE, RESET,
08 TCP_OTHER packets)
09 {return TCP_CONTROL;}
10 }
11 d0 ← direction of the first packet of b;
12 i0 ← TCP label of the first packet of b;

13 if (d0 == DL && (i0 == DATA || i0 == ACK)) Test 4
14 {return SVR_NET_DELAY;}
15 if (i0 == ACK_DUP && i0 == ACK_RECOVER &&

16 i0 == DATA_DUP && i0 == DATA_RECOVER) Test 5
17 {return TCP_LOSS_RECOVER;}

18 if (b.payload > 0 && find user input before b) Test 6

19 {return USER_INPUT;}

20 if (b.payload > 0) {return APP;} Test 7

21 else {return UNKNOWN;}

22 }

Figure 10: The burst analysis algorithm

01 Detect_Periodic_Transfers (t1, t2, ..., tn) {
02 C ← {(d, ti, tj) | d = tj − ti ∀j > i};
03 Find the longest sequence
04 D = (d1, x1, y1), ..., (dm, xm, ym) in C s.t.
05 (1) y1 = x2, y2 = x3, ..., ym−1 = xm, and
06 (2) max(di)−min(di) < p;
07 if m ≥ q return mean(d1, ..., dm);
08 else return “no periodic transfer found”;
09 }

Figure 11: Algorithm for detecting periodic transfers

do using HTTP: (i) periodically fetching the same HTTP object,
(ii) periodically connecting to the same IP address, and (iii) peri-
odically fetching an HTTP object from the same host. Detecting
other periodic activities can be trivially added to the proposed de-
tection framework shown in Figure 11. Also we found that existing
approaches for periodicity or clock detection (e.g., DFT-based [23]
and autocorrelation-based [29]) do not work well in our scenario
where the number of samples is much fewer.

The algorithm, shown in Figure 11, takes as input a time series
t1, ..., tn, and outputs the detected periodicity (i.e., the cycle dura-
tion) if it exists. It enumerates all n(n − 1)/2 possible intervals
between ti and tj where 1 ≤ i < j ≤ n (Line 2), from which the
longest sequence of intervals is computed by dynamic program-
ming (Lines 3-6). Such intervals should be consecutive (Line 5)
and have similar values whose differences are bounded by param-
eter p (Line 6). If the sequence length is long enough, larger than
the threshold parameter q, then the average interval is reported as
the cycle duration (Line 7). We empirically set p=1 sec and q=3
based on evaluating the algorithm on (i) randomly generated test
data (periodic time series mixed with noise), and (ii) real traces
studied in §7.

5.3 Profiling Applications
We describe how ARO profiles mobile applications using cross-

layer analysis. First, leveraging RRC state inference and burst anal-
ysis results, ARO computes for each burst (with its triggering factor
known) its radio resource and radio energy consumption. Then the
TCP and HTTP analysis described in §5.1 allow ARO to associate
each burst with the transport-layer or the application-layer behav-
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ior so that an ARO user can learn quantitatively what causes the
resource bottleneck for the application of interest.

We describe two methodologies for quantifying the resource con-
sumption of one or more bursts of interest: computing the upper-

bound and the lowerbound. Their key difference is whether or not
they consider non-interested bursts whose tails help reduce the re-
source consumption of those interested bursts.

Method 1: Compute the upperbound of resource consump-

tion. The radio energy consumed by burst Bi is computed as∫ t2

t1
P (S(t))dt where S(t) is the inferred RRC state at time t and

P (·) is the power function (Table 3). t1 is the time when Burst Bi

starts consuming radio resources. Usually t1 equals to the times-
tamp of the first packet of Bi. However, if Bi begins with a down-
link packet triggering a state promotion, t1 should be shifted back-
ward by the promotion delay since radio resources are allocated
during the state promotion before the first packet arrives (§4.2). t2
is the timestamp of the first packet of the next burst Bi+1, as tail
times incurred by Bi need to be considered (there may exist IDLE
periods before t2, but they do not consume any resource). Simi-
larly, t2 is shifted backward by the promotion delay if necessary.
The radio resources consumed by Bi are quantified as the DCH

occupation time between t1 and t2. We ignore radio resources al-
located for shared low-speed FACH channels.

Method 2: Compute the lowerbound. One problem with Method
1 is that it may overestimate a burst’s resource consumption, which
may already be covered by the tail of a previous burst. For example,
consider burst Y in Figure 12(a). Its resource utilization lasts from
t=12.5 sec to t=18.3 sec according to Method 1. However, such an
interval is already covered by the tail of the previous burst. In other
words, the overall resource consumption is not reduced even if in
the absence of burst Y .

To address this issue, we propose another way to quantify the
resource impact of one or more bursts by computing the differ-

ence between the resource consumption of two scenarios where the
bursts of interest are kept and removed, respectively. For example,
in Figure 12, let X and Y be the bursts of interest. Trace (a) and (d)
correspond to the original trace and a modified trace where X and
Y are removed. Then their energy impact is computed as Ea −Ed

where Ea and Ed correspond to the radio energy consumption of
trace (a) and (d), respectively. The consumed resource computed
by this method does not exceed that computed by Method 1.

5.3.1 Modifying Cellular Traces

The aforementioned Method 2 is intuitive, while the challenge
here is to construct a trace with some packets removed. In partic-
ular, RRC state promotion delays affect the packet timing. There-
fore, removing packets directly from the original trace causes inac-
curacies as it is difficult to transform the original promotion delays
to promotion delays in the modified trace with different state tran-
sitions. To address such a challenge, we propose a novel technique
for modifying cellular traces. The high-level idea is to first decou-

ple state promotion delays from application traffic patterns before
modifying the trace, then reconstruct the RRC states for the modi-
fied trace.

The whole procedure is illustrated in Figure 12a-d (assuming we
want to remove bursts X are Y ). First, the original trace (Fig-
ure 12a) is normalized by removing all promotion delays (Fig-
ure 12b). This essentially decouples the impact of state promotions
from the real application traffic patterns [24]. Then the bursts of
interest are removed from the normalized trace (Figure 12c). Next,
ARO runs the state inference algorithm again to reconstruct the
RRC states with state promotions injected using the average pro-
motion delay values shown in Table 1 (Figure 12d). As expected,
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Figure 12: An example of modifying cellular traces (X and Y are the

bursts of interest to be removed)

the first packet in Figure 12d triggers a promotion that does not
exist in the original trace (a).

Validation. We demonstrate the validity of the proposed cel-
lular trace modification technique as follows. For each of the 40
traces listed in Table 6, we compare the state inference results for
(i) the original trace (e.g., Figure 12a) and (ii) a trace with pro-
motion delays removed then RRC states reconstructed, but without
any packet removed (e.g., Figure 12e). Ideally their RRC inference
results should be the same. Our comparison results show that for
each of the 40 traces, both inference results are almost identical as
their time overlap (defined in §4.3) is at least 99%, and their total
radio energy consumption values differ by no more than 1%. The
small error stems from the difference between original promotion
delays and injected new promotion delays using fixed average val-
ues. This demonstrates that the algorithm faithfully reconstructs
the RRC states. In §7, we show resource consumption computed
by both Method 1 and Method 2.

6. IMPLEMENTATION
We briefly describe how we implemented ARO. We built the data

collector on Android 2.2 by adding two new features (1K LoC)
to tcpdump: logging user inputs and finding packet-to-application
correspondence (§3). ARO reads /dev/input/event* that
captures all user input events such as touching the screen, press-
ing buttons, and manipulating the tracking ball.

Finding the packet-to-application correspondence is more chal-
lenging. The ARO data collector realizes this using information
from three sources in Android OS: /proc/PID/fd containing
mappings from process ID (PID) to inode of each TCP/UDP socket,
/proc/net/tcp(udp) maintaining socket to inode mappings,
and /proc/PID/cmdline that has the process name of each
PID. Therefore socket to process name mappings, to be identified
by the data collector, can be obtained by correlating the above three
pieces of information. Doing so once for all sockets takes about 15
ms on Nexus One, but it is performed only when the data collector
observes a packet belonging to a newly created socket or the last
query times out (we use 30 seconds).

The runtime overhead of the data collector mainly comes from
capturing and storing the packet trace. When the throughput is as
high as 600 kbps, the CPU utilization of the data collector can reach
15% on Nexus One although the overhead is much lower when
the throughput is low. There is no noticeable degradation of user
experience when the data collector is running.
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The analyzers were implemented in C++ on Windows 7 (7.5K
LoC). The analysis time for the entire workflow shown in Figure 3
is usually less than 5 seconds for a 10-minute trace. As mentioned
in §3, ARO configures the RRC analyzer with handset and carrier
specific parameters. Currently our ARO prototype supports one
carrier and two types of handsets (Table 1 and Table 3). The RRC
analyzer for other carriers can be designed in a way very similar
to §4.1. Differences among handsets mainly lie in radio power con-
sumption and the fast dormancy behavior that are easy to measure.
Also note that TCP, HTTP, and burst analyzers are independent of
specific handset or carrier.

7. ARO USE CASE STUDIES
To demonstrate typical usage scenarios of ARO, we present case

studies of six real Android applications and show their resource in-
efficiencies identified by ARO. All applications described in this
section are in the “Top Free” section of Android Market and have
been downloaded at least 250,000 times as of December 2010. The
handset used for experiments is a Google Nexus One phone with
fast dormancy (its α and β timers are 5 sec and 3 sec, respectively
as shown in Figure 7). For identified inefficiencies, their resource
waste is even higher if fast dormancy is not used. All experiments
were performed between September 2010 and November 2010 us-
ing Carrier 1’s UMTS network whose RRC state machine is de-
picted in Figure 1.

7.1 Experimental Methodology
Our experimental methodology is straightforward: for each ap-

plication studied, we collected a trace by running the application
for at least 5 minutes (except for Google Search), then used ARO
to analyze the trace. Several factors including user behavior ran-
domness, traffic of non-target applications, and radio link quality,
may affect the data collected and henceforth the analysis results.
Clearly, the discovered traffic patterns should be stable in that they
are inherent to the application logic and thus are not affected by
user behavior randomness in common application usage scenarios.
To ensure this, for each application, we analyzed at least 5 traces
collected by at least 3 students who used the application as normal
users (except for Pandora and Mobclix that do not involve user in-
teraction). A case listed in Table 6 was reported only if the same
symptom was observed in all collected traces so that we had high
confidence that the observed traffic patterns stemmed intrinsically
from the application logic (although it is still useful to learn un-
common problems from individual traces).

To minimize the impact of non-target applications that concur-
rently access the network, we discarded a trace if any of the trans-
ferred bytes, the radio energy, or the DCH time caused by
NON_TARGET bursts (Table 5) was greater than 5% of the total
bytes, the total radio energy, or the total DCH time, respectively.
We did similar filtering by examining TCP_LOSS_RECOVER bursts.
Further, to minimize the impact of poor radio link quality, we col-
lected all traces at reasonable signal strength conditions.

7.2 Results
We now describe case studies for the six applications. As shown

in Table 6, for each application, we also found other popular appli-
cations with the same problem identified by ARO. The last column
of Table 6 shows the layers that are related to the identified inef-
ficiency. RRC, TCP, App, and User correspond to the RRC layer,
the transport layer, the application layer, and the user input layer,
respectively.
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Figure 13: Pandora visualization results. “L” (grey) and “P” (red)

bursts are LARGE_BURST and APP_PERIOD bursts, respectively.

Table 7: Pandora profiling results (Trace len: 1.45 hours)

Burst type Payloads
Energy DCH

LB UB LB UB
LARGE_BURST 96.4% 35.6% 35.9% 42.4% 42.5%
APP_PERIOD 0.2% 45.9% 46.7% 40.4% 40.9%

APP 3.2% 12.8% 13.4% 12.4% 12.8%
TCP_CONTROL 0.0% 1.2% 1.6% 1.1% 1.5%

TCP_LOSS_RECOVER 0.2% 0.2% 0.6% 0.3% 0.7%
NON_TARGET 0.0% 1.8% 1.8% 1.7% 1.7%

Total 23.6 MB 846 J 895 sec

7.2.1 Pandora Streaming

Pandora is a popular music streaming application. We collected
three Pandora traces by simply listening to the music for at least
1 hour for each trace. Table 7 shows the profiling results of one
trace, and the results for other traces are qualitatively similar. The
“UB” (upperbound) and “LB” (lowerbound) columns in Table 7
refer to the resource consumption computed by Method 1 and 2
described in §5.3, respectively. Numbers in the “LB” column do
not necessarily add up to 100%.

High resource overhead of periodic audience measurements.

The profiling results in Table 7 indicate that periodic data trans-
fers (APP_PERIOD bursts), which carry only 0.2% of total bytes,
account for 46% of total radio energy consumption and 40% of ra-
dio resource usage. The detection algorithm in Figure 11 further
pinpoints that for every 62.5 seconds, Pandora connects to lt.

andomedia.com, which provides various real-time audience mea-
surement services (e.g., monitor online listeners’ favorite radio sta-
tions), and downloads hundreds of bytes. Each such a burst, how-
ever, triggers an IDLE→DCH promotion and subsequently two
tails of 8 seconds in total. On the other hand, Pandora usually takes
less than 30 seconds to download a song (a LARGE_BURST burst)
that can be played for several minutes. As illustrated in Figure 13,
the total DCH occupation time for periodic data transfers is similar
to or even longer than the music streaming time, although the for-
mer carries much fewer and much less important user data than the
latter. The APP bursts shown in Table 7 correspond to non-periodic
transfers of album images and other metadata. Here one straightfor-
ward fix is to increase the periodicity. A more intelligent approach
is to batch such delay-tolerant transfers with delay-sensitive trans-
fers to reduce the overall tail time [10].

7.2.2 Fox News

Fox News is a popular news application. We obtained five traces
from three users who browsed the news headlines or articles as they
like for at least 5 minutes. Table 8 exemplifies profiling results of
one representative trace. The results indicate that ARO is essential
in quantitatively breaking down resource consumption into bursts
with their triggering factors inferred.

Scattered bursts due to scrolling. Table 8 indicates that the
majority of resources are spent on bursts initiated by user inter-
actions. Among them, about 15%∼18% of radio energy is re-
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Table 6: Case studies of six popular Android applications

App name App Mode # traces Case Description (Recommendations) Similar apps Layers

Pandora
Background 3

High resource overhead of periodic audience measurements Fox News RRC, App
§7.2.1 (Delay transfers and batch them with delay-sensitive transfers) Tune-in Radio

Fox News
Foreground 5

Scattered bursts due to scrolling (Transfer them in one burst) USA Today RRC, App, User
§7.2.2 Transferring duplicated contents (Use the “Expires” HTTP header) NY Times App

Foreground 10

Inefficient content prefetching (Use HTTP pipelining for transferring NY Times TCP, App
BBC News multiple small objects for networks with high bw-delay product)

§7.2.3 Scattered bursts of delayed FIN/RST packets (Close a CBS News RRC, TCP, App
connection immediately if possible, or within tail time) Google Shopper

Google Search
Foreground 15

High resource overhead of query suggestions and instant search Bing Search RRC, App, User
§7.2.4 (Balance between functionality and resource when battery is low) Yahoo Search

Tune-in Radio
Foreground 5

Low DCH utilization due to constant-bitrate streaming NPR Radio RRC, App
§7.2.5 (Buffer data and periodically stream data in one burst) Iheartradio Radio

Mobclix
Foreground 2

Aggressive ad refresh rate making a handset persistently occupy FACH Apps with Mobclix RRC, App
§7.2.6 or DCH (decrease the refresh rate, piggyback or batch ad updates) ads embedded
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Figure 14: The Fox News results. “U” (green) and “S” (purple) bursts

are triggered by tapping and scrolling the screen, respectively.

Figure 15: Headlines of the Fox News application. The thumbnail

images (highlighted by the red box) are transferred only when they are

displayed as a user scrolls down the screen.

sponsible for bursts generated when a user scrolls the screen. By
examining HTTP responses associated with such bursts, we dis-
cover that thumbnail images embedded in headlines (Figure 15)
are transferred only when they are displayed as a user scrolls down
the screen. Thus as illustrated in Figure 14, when a user browses
the headlines, the handset always occupies the DCH state due to
such on-demand transfers of thumbnails. On the other hand, each
thumbnail has very small size (less than 5KB each). A suggested
improvement is to download all thumbnails (usually less than 15)
in one burst. Doing so significantly shortens the overall DCH occu-
pation time for headline browsing with negligible bandwidth over-
head incurred. We observe this problem for other news applications
(e.g., USA Today) that use the same application framework.

Transferring duplicate contents. The HTTP analyzer (§5.1)
extracts HTTP objects from the trace. We discovered that often,

Table 8: Fox News profiling results (Trace len: 10 mins)

Prefetching Phase

Burst type Payloads
Energy DCH

LB UB LB UB

USER_INPUT(Click) 91.0% 56.7% 67.6% 60.2% 70.4%
USER_INPUT(Scroll) 5.9% 15.2% 17.9% 14.7% 16.7%

APP_PERIOD 1.5% 5.2% 7.5% 6.1% 7.4%
TCP_CONTROL 0 0.7% 3.7% 0.0% 2.3%

TCP_LOSS_RECOVER 1.5% 0.7% 2.5% 1.9% 3.2%
SVR_NET_DELAY 0.1% 0.4% 0.8% 0.0% 0.0%

Total 1.0 MB 276 J 284 sec

Table 9: BBC News profiling results

Prefetching Phase (1.4 mins)

Burst type Payloads
Energy DCH

LB UB LB UB

LARGE_BURST 100% 100% 100% 100% 100%

Total 1.1 MB 60.1 J 82.8 sec

User-triggered Fetching Phase (8 mins)

Burst type Payloads
Energy DCH

LB UB LB UB

TCP_CONTROL 0 11.3% 24.2% 0.0% 5.7%
USER_INPUT 98.7% 42.5% 73.1% 37.9% 90.0%

SVR_NET_DELAY 1% 0.0% 2.7% 0.0% 5.2%

Total 162 KB 145 J 120 sec

the same content is repeatedly transferred, leading to waste of band-
width. For example, Fox News fetches the same object foxnews.
com/weather/feed/getWeatherXmlwhenever a news article is
loaded, and the response from the server (45 KB) is identical un-
less the weather information, updated hourly, changes. The prob-
lem can be fixed by letting the server put an “Expires” header in an
HTTP response to explicitly tell the client how long the content can
be cached [3].

7.2.3 BBC News

BBC News is another news application. Unlike Fox News, which
fetches an article only when a user wants to read it, the network
usage of BBC News consists of two phases: prefetching and user-
triggered data fetching.

Inefficient content prefetching. Prefetching happens when a
news category (e.g., Sports), which is not yet cached or is out-of-
date, is selected by a user. In the prefetching phase, the application
downloads the headline page with thumbnails, and more aggres-
sively, contents of all articles of the selected news category in a
single large burst. While it is arguable whether aggressive prefetch-
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Figure 16: BBC News results: prefetching followed by 4 user-triggered transfers. “U” (green), “C”

(blue), and “L” (grey) bursts are USER_INPUT,TCP_CONTROL, and LARGE_BURST bursts, respectively.

Figure 17: ARO visualization re-

sults for Google search
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ing, which efficiently utilizes radio resources but wastes network
bandwidth as some contents may not be consumed by end users,
is a good strategy, the prefetching of BBC News is performed in-
efficiently. It takes up to two minutes for BBC News to prefetch
all articles (e.g., 60 articles in one trace) of a news category. The
HTTP analyzer reveals that the application issues one single HTTP
GET for each article, then waits for the response before issuing the
next HTTP GET. A more efficient approach is HTTP pipelining,
i.e., the application sends all 60 URLs in a single HTTP GET and
hence the server transfers all articles without interruption. Given
the scenario where many small objects are transferred in a net-
work of high bandwidth-delay product, HTTP pipelining, which
is widely supported by modern web servers, dramatically improves
the throughput by eliminating unnecessary round trips and allow-
ing more outstanding (i.e., in-flight) data packets with almost no
head-of-line blocking overhead [11].

Scattered bursts due to delayed FIN/RST. After prefetching,
clicking on an article triggers very little traffic. However, as shown
in Table 9, TCP_CONTROL bursts, which do not carry any user
payload, consume 11%∼24% of the radio energy. Such TCP_CONTROL
bursts are FIN or RST packets, i.e., the application delays closing
TCP connections. As shown in Figure 16, they waste radio energy
by causing additional FACH occupation time.

Delayed FIN or RST packets are caused by connection timeout
maintained by either an HTTP client or server that uses persistent
HTTP connections. Different applications may use different time-
out values since the HTTP 1.1 protocol places no requirements on
how to set the value [15]. We observe that some applications (e.g.,

Facebook and Amazon Shopper) always immediately shut down a
connection, while BBC News may delay closing a connection by
up to 15 seconds after the last HTTP response is transmitted. In
our traces, 50% of its FIN/RST are delayed by at least 5 seconds,
which is the α timer value, potentially triggering a FACH→DCH

promotion.
Figure 18 plots distributions of delayed time for FIN or RST

packets for two application traces. Facebook always immediately
shuts down a connection, while BBC News may delay closing a
connection by up to 15 seconds after the last HTTP response is

transmitted. We observe from traces that most FIN and RST pack-
ets are initiated by a handset instead of by a server.

Eliminating delayed FIN/RST packets saves resources, but clos-
ing a connection too early may prevent it from being reused, thus
incurring additional overhead for establishing new connections. A
compromise is to close the connection before the α timer expires to
avoid a state promotion triggered by delayed FIN/RST. For Carrier
1, doing so further benefits handset battery life, as usually FIN and
RST packets do not reset the α timer due to their small sizes (§4.1).
Smartphone OS can help applications properly close TCP connec-
tions by collecting hints from applications and employing different
connection timeout values depending on the carrier type.

7.2.4 Google Search

Search is among the most popular browsing activities on smart-
phones [14]. Almost all search engines provide real-time query
suggestions as a user types keywords in the search box. We show
that such a feature consumes significant radio energy (up to 78%)
and radio resources (up to 76%) by conducting a user study.

Five student users participated in our user study. Each student
searched three keywords in mobile version of Google using Nexus
One: “university of michigan”, ”ann arbor”, and “android 2.2”. A
trial is abandoned if any typing mistake was made (typing mistakes
worsen the resource efficiency). The participants were asked to
use the query suggestion whenever possible. Browser caches were
cleared before each trial. We believe these keywords are represen-
tative although the length and popularity of keywords may affect
the results.

High resource overhead of real-time query suggestions and

instant search. We obtained 15 traces (3 keywords searched by 5
users) which were further analyzed by ARO. We broke down each
trace into three phases: (i) Input Phase, i.e., a user is typing a key-
word. (ii) Search Phase, i.e., after a user submits the keyword, and
before the last byte of the search results is received. (iii) Tail Phase,
i.e., the remaining time until the RRC state is demoted to IDLE. An
example for searching “university of michigan” is shown in Fig-
ure 17. Subsequently, ARO computes transferred payload bytes
(Figure 19-a), radio energy consumption (Figure 19-b), and DCH

time (Figure 19-c) for each phase. Each plot of Figure 19 con-
sists of results of the three keywords. For each keyword, “I”, “S”,
and ”T” correspond to Input Phase, Search Phase, and Tail Phase,
respectively. Figures 17 and 19 clearly show that while a user is
typing a keyword, real-time query suggestions keep the handset at
DCH, consuming 2.3 to 3.5 times of radio energy and 1.8 to 3.2
times of DCH time, compared to those consumed by Search Phase.
We note that a similar problem occurs for Google instant search
(results appear instantly as a user types a keyword) that is available
for Android since Nov 2010 [4].

Query suggestions and instant search improve user experience.
However, realizing their high resource impact in cellular network,
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Figure 19: Breakdown of (a) transferred payload size (b) radio energy (c) DCH occupation time for searching three keywords in Google. “I”, “S”,

“T” correspond to Input Phase, Searching Phase, and Tail Phase, respectively.

Table 10: Constant bitrate vs. bursty streaming

Name Server bitrate Radio Power

NPR News SHOUTcast 32 kbps+ 36 J/min
Tune-in Icecast 119 kbps 36 J/min
Iheartradio QTSS 32 kbps 36 J/min
Pandora Apache bursty 11.2 J/min
Pandora w/o mes∗ Apache bursty 4.8 J/min
Slacker Apache bursty 10.9 J/min
∗A hypothetical case where all periodic audience measurement
data transfers are removed.
+NPR News also uses a higher bitrate of 128 kbps for some content.

the application can balance between functionality and resource when
the latter becomes a bottleneck (e.g., the battery is critically low).
For example, using historical keywords and a local dictionary to
suggest search hints is an alternative but with worse functionality.

7.2.5 Tune-in Radio (and Other Streaming Apps)

The Tune-in Radio application delivers live streams of hundreds
of FM/AM radio stations. Table 10 further lists NPR News and
Iheartradio, two popular live radio streaming applications similar
to Tune-in Radio. All three applications employ existing radio
streaming schemes that work well on wired networks and WiFi: the
server streams data at a constant bitrate (e.g., 32 kbps) to a client
without any pause.

Low DCH utilization due to constant-bitrate streaming. In
cellular networks, however, continuously streaming at a constant
low bitrate causes considerable inefficiencies on resource utiliza-
tion, as a handset is always using the DCH channel, whose avail-
able bandwidth is significantly under-utilized, whenever a user is
listening to the radio. Table 10 compares constant-bitrate streaming
to the bursty streaming strategy employed by Pandora and Slacker
Radio where a program is buffered in one burst utilizing the maxi-
mum available bandwidth then the application does not access the
network while playing the program. The last column of Table 10 in-
dicates that for the two streaming strategies, their energy efficiency,
i.e., the average radio energy consumption for listening to the ra-
dio for 1 minute, differs by up to 7.5 times. For radio programs
whose real-time is not strictly required (e.g., their delivery can be
delayed by one minute), a live streaming server can also perform
similar bursty streaming to save handset energy and radio resources
by buffering data and periodically streaming data in one burst.

7.2.6 Mobclix (and Other Mobile Ad Platforms)

We investigate advertisement dissemination strategies for three
popular mobile ad platforms: Google Mobile Ad, AdMob, and
Mobclix. All platforms allow developers to easily display ads in
their applications by providing simple SDKs. We thus built three
toy Android applications each using one ad platform with its de-
fault configuration. Then we employed ARO to profile each ad-
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Figure 20: Results for Mobclix (w/o FD). “U” (green) and “P” (red)

bursts are USER_INPUT and APP_PERIOD bursts, respectively.

Table 11: Comparing three mobile ad platforms

Name
Default Avg Up- Radio Power

Refresh Rate date Size w/ FD w/o FD

Google Mobile Ad 180.0 sec 6.0 KB 2.5 J/min 3.6 J/min
AdMob 62.5 sec 6.8 KB 5.7 J/min 8.8 J/min
Mobclix 15.0 sec 1.4 KB 23.2 J/min 29.6 J/min

embedded application for five hours, using two Nexus One phones
(Table 1) where one has a shorter FACH→IDLE timer (3 sec) due
to fast dormancy (the “w/ FD” column in Table 11) and the other
uses default timers of Carrier 1 without fast dormancy (the “w/o
FD” column). Also note that our toy applications themselves do
not have any network activity so the network traffic is solely gener-
ated by ad modules.

Aggressive ad refresh rate. We discuss the profiling results. As
identified by ARO, all ad platforms by default employ a fixed re-
fresh rate for updating the ads. For example, an application using
AdMob pings r.admob.com for every 62.5 sec. Then the server
may either push a new ad or let the application display the existing
ad. Surprisingly, as summarized in Table 11, the three platforms
use considerably different refresh rates, leading to remarkable dis-
parity of their radio power consumption, especially for applications
without network activities (e.g., games). In particular, as illustrated
in Figure 20, Mobclix employs an aggressive refresh rate of 15 sec
that is even shorter than the default tail time of Carrier 1 (17 sec
when fast dormancy is not used), making the handset persistently
occupying DCH or FACH whenever the application is running.

8. RELATED WORK
We describe related work in three categories below.
Profiling and measurements. Previous work [24] systemati-

cally characterizes the impact of the RRC state machine on radio
resources and energy by analyzing traces collected from a commer-
cial UMTS network. Similar measurements have been done by [30,
20] using analytical models. Recent work [13] also investigates im-
pact of traffic patterns on radio power management policy and pro-
poses suggestions such as reducing the tail time to save handset en-
ergy. These studies did examine the interplay between smartphone
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applications and the state machine behavior, while our work makes
a significant further step by introducing a novel tool that system-
atically correlates information at multiple layers to reveal the low
efficiency of resource utilization to application developers. Other
measurement work (e.g., 3gTest [19], LiveLab [28], and [14]) col-
lect traces from real smartphone users, focusing on characterization
at only IP and higher layers. Complementary to our work are pro-
filing tools (e.g., PowerTutor [31]) that focus on power modeling.

RRC Inference techniques. Previous work [22] introduced 3G
Transition Triggering Tool to infer RRC state machine parameters.
[24] further considered and inferred different state transition mod-
els configured by two commercial UMTS carriers. Previous ef-
fort [24, 25] also uses a simulation-based approach to obtain RRC
state machine statistics. Our inference algorithm presented in this
paper differs from the previous approach with different scope of
application, finer simulation granularity, and higher accuracy (§4).

Optimizing traffic patterns. Many work propose techniques
to optimize smartphone application performance and energy effi-
ciency. [10] introduced TailEnder, which delays transfers of delay-
tolerant traffic and batches them with normal traffic, so that the
overall tail time incurred by delay-tolerant traffic could be reduced.
Also prefetching could be used to reduce tail time. Similar batching
strategies are presented in [9] and [26]. In contrast, ARO provides
application developers with more opportunities to optimize short
bursts that can be triggered by multiple factors.

9. CONCLUDING REMARKS
We have presented ARO, the first tool that exposes the cross-

layer interaction for layers ranging from radio resource control to
application layer. We have demonstrated using popular mobile
applications that ARO helps reveal several previously unknown,
general categories of inefficient resource usage, affecting distinct
classes of mobile applications due to a lack of transparency in the
lower-layer protocol behaviors. In particular, we are starting to con-
tact developers of popular applications such as Pandora. The feed-
back has been encouragingly positive as the provided technique
greatly helps developers identify resource usage inefficiencies and
improve their applications [2]. We are actively working on releas-
ing our tool to smartphone users and developers.

Our work opens and enables new research opportunities for (i)

analyzing other cross-layer information (e.g., cellular handoff events,
OS events, and application activities) for more fine-grained diagno-
sis of performance and resource utilization inefficiencies, and (ii)

providing automated mitigation solutions to identified inefficien-
cies. We plan to explore them in our future work.
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